
 1

Problem #1 - Queries

Use this sample database: s (s#, name, rank, city, workers)
 p (p#, name, color, weight, city)
 j (j#, name, workers, city)
 spj (s#, p#, j#, qty)

 where: in s: rank is a numeric field, and workers is the number of employees of that
supplier.

in p: city is the city in which the part is built.
in j: workers is the number of workers on that job.

1. List the names of all the suppliers who supply part P2 to any job.

Relational Algebra

Step-by-step technique:

 T1 = (p#=P2)(spj) //get all shipment tuples that involve part P2

 T2 = s  T1 //combine all P2 shipments with all supplier tuples

 T3 = (s.s# = spj.s#)(T2) //remove “junk” tuples from T2, want s# matches

 T4 = (name)(T3) //project only supplier names from T3

 Single expression technique:

(name)((s.s# = spj.s#)(s  ((p#=P2)(spj))))

 Another form that also works is:

 (name)(((s.s# = spj.s#) AND (p# = P2))(s  spj))

 Think about why the first form might be better than the second form.

COP 4710 – Database Systems – Fall 2013

Practice Problems for Exam #2 KEY

 2

Tuple Calculus

 {t.name | t ∈ s and ∃u (u ∈ spj and u.p# = “P2” and u.s#=t.s#) }

SQL
 SELECT name
 FROM s NATURAL JOIN spj
 WHERE spj.p# = “P2”;

 -or –

 SELECT sname
 FROM s
 WHERE s# IN (SELECT s#
 FROM spj
 WHERE p# = “P2”);

2. List the names of those cities in which there is a job located that employs more than

200 workers.

Relational Algebra
Step-by-step technique:

T1 = (workers > 200)(j) //select all tuples in j with > 200 workers

T2 = (city)(T1) //project the city attribute from tuples in T1
Single expression technique:

 (city)((workers > 200)(j))

 Tuple Calculus

 {t.name | t ∈ j and t.workers > 200 }

 SQL
 SELECT name
 FROM j
 WHERE workers > 200;

 3

3. List the supplier names for those suppliers who supply at least one red part.

Relational Algebra

Step-by-step technique:

T1 = (color = red)(p) // select all tuples involving red parts

T2 = spj  T1 //combine all spj tuples with T1 tuples

T3 = (spj.p# = T1.p#)(T2) //remove “junk” tuples from T2, match p#

T4 = (s#)(T3) //project out only s# attributes from T3

T5 = s  T4 //combine all s tuples with T4 tuples

T6 = (s.s# = T5.s#)(T5) //remove “junk” tuples from T5, match s#

T7 = (name)(T6) //project the names

Single expression technique:

 (name)((s.s# = spj.s#)(s  (spj.s#)((spj.p# = p.p#)(spj  ((color = red)(p))))))

 Tuple Calculus

 {t.name | t ∈ s and ∃u (u ∈ spj and t.s# = u.s# and ∃v (v ∈ p and v.color = “red”

 and v.p# = u.p#)) }

 SQL
 SELECT name
 FROM s
 WHERE EXISTS (SELECT *
 FROM spj
 WHERE spj.s# = s.s# AND EXISTS (SELECT *
 FROM p
 WHERE p.p# = spj.p#
 AND
 color = “red”));

-or-

 SELECT name
 FROM s NATURAL JOIN spj
 WHERE spj.p# IN (SELECT p#
 FROM p
 WHERE color = “red”);

 4

-or-

 SELECT name
 FROM s
 WHERE s# IN (SELECT s#
 FROM spj
 WHERE p# IN (SELECT p#
 FROM p
 WHERE color = “red”));

4. Write a relational algebra expression that correctly answers the query: List the names

of those suppliers who both job number J1 and J2 with any part.

Relational Algbera

        spjss 2P#p#s#s#s.s#s.spjname  

 Tuple Calculus

 {t.name | t ∈ s and NOT ∃u (u ∈ spj and u.s# = t.s# and u.p# = “P2”) }

 SQL
 SELECT name
 FROM s
 WHERE s# IN (SELECT s#
 FROM spj
 WHERE spj.j# = “J1”)
 AND
 s# IN (SELECT s#
 FROM spj
 WHERE spj.j# = “J2”);

5. Write a relational algebra expression that correctly answers the query: List the

supplier names from those suppliers who do not supply part number P2.

Relational Algebra

         . # . # # # " 1" # # " 2"name s s spj s s j J s j Js spj spj       

   
 

 5

 Tuple Calculus

 {t.name | t ∈ s and ∃u (u ∈ spj and u.s# = t.s# and u.j# = “J1” and ∃v (v ∈ spj

 and v.s# = t.s# and v.j# = “J2”)) }

 SQL

SELECT name
 FROM s
 WHERE s# NOT IN (SELECT s#
 FROM spj
 WHERE p# = “P2”);

6. List all quadruples of the form (s#, p#, s#, p#) where the first supplier number ships the

same part number as the second supplier, but the first supplier has at least one
shipment of that part in a quantity greater than the second supplier. Eliminate from
your result, all cases where the two supplier numbers happen to be the same. (Note
that this query requires assigning an alias, i.e., renaming the shipments relation.)

Let t alias spj.

Relational Algebra

     spjt#s.spj#s.tANDqty.spjqty.tAND#p.spj#p.t#p.spj,#s.spj,#p.t,#s.t  

Tuple Calculus

{t.s#, t.p#, u.s#, u.p# | t ∈ spj and u ∈ spj and t.s# <> u.s# and t.p# = u.p# and ∃v (v ∈ spj

and v.s# = t.s# and v.p# = u.p# and v.qty > u.qty) }

SQL
 SELECT spj.s#, spj.p#, spj1.s#, spj1.p#
 FROM spj CROSS JOIN spj as spj1
 WHERE spj.s# <> spj1.s# and spj.p# = spj1.p# and

spj.s# IN (SELECT s#
 FROM spj as spj2
 WHERE spj2.qty > spj1.qty and spj2.s# <> spj1.s#);

 6

Problem #2 – 3NF Decomposition
Given the relation scheme R, the set of functional dependencies F, and the set of
keys K shown below, produce a 3NF decomposition scheme of R with respect to F.
Clearly show the final decomposition scheme. Do NOT test for either the lossless
join nor the preservation of dependencies – just do the decomposition.

 R = (number, name, status, city, quantity, division)
 K = { number }

 F = { status  quantity, city  division, name  city }

Step 1: Remove transitive dependency: number  status  quantity
R1 = (number, name, status, city, division)
K1 = K = { number }

 R2 = (status, quantity) in 3NF
 K2 = { status }

Step 2: Remove transitive dependency: number  city  division
 R11 = (number, name, status, city)
 K11 = K1 = K = { number }

 R12 = (city, division) in 3NF
 K12 = { city }

Step 3: Remove transitive dependency: number  name  city
 R111 = (number, name, status) in 3NF
 K111 = K11 = K1 = K = { number }

 R112 = (name, city) in 3NF
 K112 = { name }

Final decomposition scheme D = { R2, R12, R111, R112 }

